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Abstract—This paper presents the budgeted transcript discovery
problem (BTD): deciding how to spend a given research budget
collecting data, using a combination of microarrays and PCRs,
to discover which transcripts are differentially expressed with
respect to a given phenotype. We present algorithms that address
this task by sequentially analyzing the data collected so far, to
decide which data would be most informative to collect next. We
provide empirical studies that demonstrate their effectiveness.
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I. INTRODUCTION

A microarray observes the expression levels of all of
the genes and transcripts of a sample – i.e., the entire
transcriptome.1 Many transcriptomics researchers use such
microarrays for exploratory studies to determine which genes
are “biomarkers”, i.e., are individually associated with some
specific biologically interesting phenotype. Unfortunately, dif-
ferent microarray studies, investigating the same phenotype,
often produce very different results [1] – even if the same
tissue samples are arrayed by different labs [2].

The conflict between studies can be attributed to both
statistical issues arising from (1) analyzing tens of thousands of
genes with only a handful of observations [3], and (2) method-
ological decisions such as choice of summary statistics and
criterion for deciding differential expresion [4]. To see that
issue (1) is not going away: note that the number of microarray
datasets submitted to the GEO microarray database [5] has
been steadily increasing, with approximately 10,000 last year;
Figure 1[top]. However, Figure 1[bottom] shows that the
number of microarrays used per dataset has not increased over
time: essentially all have less than 100 microarrays and the
majority have only 10–12. This trend suggests the statistical
issues of microarray studies will remain.

To alleviate these issues, some researchers will perform a
follow up validation study using PCR (polymerase chain re-
action) to confirm that the genes implicated by the microarray
study truly are differentially expressed [6]. However, there is
yet to be a consensus as to which genes require confirmation,
what confirmation will be, nor how it will be achieved [7], [8].

1Below, we will just use “genes”, with the understanding that this term also
includes transcripts.
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Fig. 1. [top] Summary of the dataset submitted to GEO per year. [bottom] Box
and whisker plots for the number of microarrays per dataset.

This leads to the Budgeted Transcript Discovery (BTD)
problem. The goal of BTD is to provide a framework within
which microarray and PCR studies can be combined to objec-
tively identify the genes associated with a phenotype. Thus, we
address the aforementioned methodological issues, and present
a solution to the previously open problem of defining a strategy
for validating microarray studies with follow up confirmation
via PCR.

We begin by formally defining our BTD problem in Sec-
tion I-A. Section I-B presents approaches to similar problems
from statistics and computing science, which we will later
use as building blocks for our BTD algorithms in Section II.
Section III compares these algorithms experimentally.

A. Formal Model

We assume we have a set of genes G = {g1, . . . , gN} and
wish to find the subset that are relevant (i.e., “biomarkers”)
w.r.t. some binary phenotype of interest – e.g., corresponding to
biopsies from breast cancer tumors, some of which responded
to a treatment (labeling that instance as “+”), or not (“−”).
We also have a set of instances, each with the associated +/−
label. Furthermore, we are able to use both microarrays and
PCRs to observe the values of these genes, from any instance.
The relevance of gene gi is assessed based on the effect size
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observation χ (either χ = M for microarray or χ = P for
PCR), where µ(χ)
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for gene i for the +instances (resp., −instances), and we also
assume a common standard deviation σ(χ)

i .

Naturally features will have different effect sizes for the
two observation types, with ∆

(P )
i > ∆

(M)
i , as PCR is more

accurate than microarray. We define the set of relevant genes
to be R = {gi : ∆

(χ)
i ≥ ∆
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min and ∆
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min.

Definition [Budgeted transcript discovery problem] Given a
total experimentation budget B, collect data using a series of
microarrays (each of which produces an observation of the
expression of each gene, for a specified individual, at the cost
CM ) and PCR’s (each of which produces an observation of the
expression of a single specified gene, for a specified individual,
at cost 1). The data will be collected sequentially, in that the
results from each observation may be used to select which
observation to perform later. After spending the budget B
collecting information, the goal is to return the relevant set
of genes R ⊂ G.

We assume that algorithms for this problem know the
sensitivities (∆(M)

min, ∆
(P )
min) for the technologies used. They

also know (a reasonable estimate of) the number of relevant
genes |R| that they may use to tune their parameters.2 We
evaluate an algorithm based on its F1 score,

F1 ( TP, FP, |R| ) =
2 TP

|R| + TP + FP
, (1)

where TP and FP denote the counts of relevant and irrelevant
genes in the returned set, respectively. �

We chose the F1 measure for two reasons. (1) It has the
desired property of rewarding the discovery of relevant genes
and penalizing both false positives and false negatives. (2) This
measure is good at penalizing degenerate behaviour, which
is relevant as, in most situations, there will be relatively few
relevant genes, |R| � |G|.

B. Related Problems

The problem of testing if a single gene is relevant, cor-
responds to the sequential hypothesis testing problem, of
collecting data until one of two hypotheses, H0 versus H1, can
be decided at a pre-fixed confidence. The sequential probability
ratio test (SPRT) [9] solves this problem optimally in the
sense that provably no other algorithm can make the decision
with the same confidence and collect less data in expectation.
Unfortunately no theoretical work has been done to analyze
the case of running N SPRTs with a common budget – i.e.,
in the event that the budget is insufficient for all SPRTs to
terminate, it is unclear how to divide the budget across the
genes.

The m-best arm identification problem [10]–[12] shares
much of the problem structure with our BTD problem. An
algorithm for m-best arm identification is given N distributions
(arms), with the goal of finding the m-best arms, i.e., the
distributions with the largest mean values. There is an obvious
mapping of this problem to our BTD, but a key difference
is that we evaluate algorithms based on the F1 score, while

2This assumption is plausible as the biologists involved in the study typically
know the difficulty of the study without knowing the outcome a priori.

m-best arm algorithms are constructed to solve the problem
exactly with a high confidence – i.e., an algorithm only gets
a point if it correctly returns exactly the m-best arms; finding
99 of the top 100 arms in a set of 1000 is as bad as finding
nothing at all.

Note also that neither the SPRT nor the m-best arm iden-
tification tasks deal with the challenge of switching between
collecting data using microarrays to using PCRs, with their
differing cost and accuracy models.

II. BTD ALGORITHMS

This section presents several algorithms for the BTD
problem. Each algorithm is allowed to perform any sequence
of microarrays and PCRs within the budget constraint. An
algorithm may use any observed values it wishes in order
to decide which observation to collect next. To reduce the
complexity of the algorithms, we force them to collect data
from both classes equally – i.e., when collecting data, the
algorithm may either use two PCRs to observe the expression
value of a specified gene gi from both a +instance and for
a −instance, or it may use two microrrays to observe the
expression values of all genes from a +instance and from a
−instance.

Keeping with common practice in bioinformatics, we con-
struct our algorithms under the assumption that gene expres-
sion values for each gene (for each category + vs −) are
drawn from a normal distribution [13]–[15]. For compactness
in the algorithm descriptions, we assume that each algorithm
keeps track of all sufficient statistics required to compute
sample estimates of effect sizes, ∆̂

(M)
i and ∆̂
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i , and the log-

likelihood ratio,
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Note we only use the PCR data when computing the log-
likelihood ratios for reasons that will be come apparent in
Section II-B when we present our mSPRT algorithm.

A. Round Robin (RR & RR+RR)

We begin by considering naive algorithms that make no
attempt to exploit the sequential nature of the problem. The
first algorithm, RR, spends all the budget collecting microar-
rays then applies a simple threshold decision for relevance. The
second algorithm, RR+RR, spends part of the budget collecting
microarrays to eliminate the obviously irrelevant genes and
then spends the remaining budget to collect an equal amount
of PCR on the remaining genes. We call these algorithms RR
and RR+RR, in reference to the round robin nature of the data
collection.

We tune the parameters for these algorithms by observing
that if ∆̂ is computed from n samples, then ∆̂

√
n/2 follows

a non-central t-distribution. Using the appropriate values of
∆ in Eqn 2, it is straightforward to tune the parameters to
maximize the expected F1 score (Eqn 1) of RR and RR+RR.
For microarrays, we use ∆ = 1

2∆
(M)
min for the irrelevant genes

and ∆ = 3
2∆

(M)
min for the relevant genes.
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where Tν,λ (·) is the CDF for the non-central t-distribution
with ν degrees of freedom and non-centrality parameter λ.

Algorithm 1 RR % uses τ [Eqn 1, 2]
1: collect bB/CMc microarrays
2: Return R̂ =

{
gi : ∆̂

(M)
i > τ

}
Algorithm 2 RR+RR % uses n, τ1, τ2 [Eqn 1, 2]

1: collect n microarrays
2: uncertain = {gi : ∆̂

(M)
i > τ1} and h = budget left

|uncertain|
3: for gi ∈ uncertain do
4: collect h observations of gene i
5: Return R̂ =

{
gi : ∆̂

(P )
i > τ2 AND gi ∈ uncertain

}

B. Modified Sequential Probability Ratio Test (mSPRT)

While RR and RR+RR are quick and easy solutions, notice
that they do not model the sequential nature of the problem.
An obvious improvement to RR+RR would be to run a SPRT
for each gene in the uncertain set, with the additional criteria
that we terminate the SPRT for each gene if it collects as
many observations as RR+RR. Thus, we can ensure that all
decisions are made with the same confidence as RR+RR but
we potentially spend less budget. The remaining budget can
then be used to refine decisions about genes that are closest
to the decision boundary.

To set the parameters for this modified SPRT (mSPRT)
algorithm, we compute the true and false positive probabilities
from RR+RR, denoted pTP and pFP respectively, and use
them to set the bounds,

γ0 = log

(
1− pTP
1− pFP

)
and γ1 = log

(
pTP
pFP

)
. (3)

C. Lower Upper Confidence Bounds (LUCB)

While it is easy to motivate mSPRT, as it definitely beats
RR+RR, it may also be limited in that it only seeks to beat
RR+RR. An algorithm could potentially do better by spending

Algorithm 3 mSPRT % uses n, τ1 [Eqn 1, 2]; γ0, γ1 [Eqn 3]
1: collect n microarrays
2: uncertain = {gi : ∆̂

(M)
i > τ1} and h = budget left

|uncertain|
3: for gi ∈ uncertain do
4: mi = 0 and Λi = 0
5: while γ0 < Λi < γ1 AND mi < h do
6: collect an observation of gene gi
7: while budget left do
8: i = arg mini∈uncertain |Λi − γ1|
9: collect an observation of gene gi

10: Return R̂ = {gi : Λi > γ1 AND gi ∈ uncertain}

Algorithm 4 mLUCB( α, C ) % uses n, τ1 [Eqn 1, 2]
1: collect n microarrays
2: uncertain = {gi : ∆̂

(M)
i > τ1}

3: for gi ∈ uncertain do
4: mi = 2
5: collect two observations of gene gi
6: t = 0
7: while budget left do
8: t = t+ 1
9: for gi ∈ uncertain do

10: bi =
√

C
mi

log(t)

11: i = arg mini

{
∆̂

(P )
i + bi : ∆̂

(P )
i < α

}
12: j = arg minj

{
∆̂

(P )
j − bj : ∆̂

(P )
j > α

}
13: collect an observation of gene gi, and gene gj
14: mi = mi + 1 and mj = mj + 1

15: Return R̂ =
{
gi : ∆̂

(P )
i > α AND gi ∈ uncertain

}

less budget on the initial SPRT phase and more budget on
the latter greedy phase. To construct such an algorithm, we
modify the LUCB1 algorithm for the best m-arm identification
problem [11] to create our mLUCB. This algorithm operates
by splitting the genes in the uncertain set based on their
estimates of ∆̂(P ), above or below threshold α, and then
collects observations of the genes that are close to the decision
boundary. To prevent the algorithm from spending too much
effort on the hard-to-classify genes close the boundary, we
use optimistic confidence bounds to augment the estimates.
Confidence bounds are controlled by the C parameter; where
large C encourages the algorithm to behave more like RR+RR
and smaller C cause the algorithm to behave more greedily.

III. EXPERIMENTS

One way to compare the effectiveness of our various
algorithms is by running them on some historical datasets,
which include both microarray data for a set of instances,
and also PCR data over all of the genes for those instances.
Unfortunately, there are no such datasets, as it is prohibitively
expensive to collect that much PCR data.

We instead used a realistic synthetic testbed, using the
microarray data from GSE417263 [16], involving 134 mi-
croarrays over 41,000 genes. Keeping with our modelling
assumptions, we set normal distributions for each class for
each gene such that for each gene ∆

(M)
i matches the observed

value in the dataset. To model that PCR is more accurate that
microarrays, we then set ∆

(P )
i = 2∆

(M)
i for all genes.

For the experiment we define the relevant genes to be R =

{gi : ∆
(M)
i ≥ 1}, which corresponds to 141 genes. We set

the budget to correspond to 20 microarrays, B = 20CM . We
will consider the effect of different microarray vs PCR costs
by scaling the CM parameter.

We tune parameters for RR, RR+RR, and mSPRT, using
Eqn 1 and 2 and enumerating all possible outcomes, under
the assumption that |R| = 150. To tune mLUCB, we consider

3http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41726



the simplified case where ∆(M) = 1 and ∆(P ) = 2 for all
relevant genes, and ∆(M) = ∆(P ) = 0 for the irrelevant
genes. Figure 2[left] shows the comparison in terms of the
expected F1 score. We can see that mLUCB performs the best
when CM is low. However, as CM increases, mSPRT does
significantly better. Figure 2[right] shows the precision (a.k.a.
true positive rate) of the algorithms, which makes it clear that
the RR, RR+RR, and mLUCB algorithms try to achieve a good
F1 score by returning a large number of genes in the hope of
selecting a few of the relevant ones by chance, while mSPRT
tries to achieve a good F1 score by returning relatively few
genes, but ones that (it thinks) are relevant. We believe that
mSPRT’s behaviour is closest to what bioinformaticians will
want.

To explain the slight dip in mSPRT’s performance, at
around CM ≈600: This dip occurs because the increased CM
allows mSPRT to perform more PCRs, meaning it explored
some genes with ∆

(P )
i ≈ ∆

(P )
min and thus suffered some false

positives. However as CM further increased, mSPRT then had
sufficient budget to correct those false positives.
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Fig. 2. Comparison of the algorithms; [left] F1 score, [right] precision.

IV. CONCLUSION

Future Work: For this work we considered algorithms that
had access to a reasonable estimates of |R|. A natural extension
would be to design a meta-algorithm that can estimate |R|
while collecting the initial microarrays, which it could then
use to tune the parameters on the fly, and decide whether it
should run mSPRT or mLUCB.

Our algorithms implicitly incorporate the naive-bayes as-
sumption: that the expression values for the genes are inde-
pendent, given the class label. We considered extending the
algorithms to model interactions between the genes, as we
know that gene expressions are correlated with one other.
However, this would involve learning a correlation structure
for all pairs (or worse, all r-tuples) of features; due to the
large number of features, this approach would be further
plagued with statistical issues. We believe it is better to develop
algorithms for BTD under the naive bayes assumption as
they cannot be mislead by believing an incorrect correlation
structure.

Contributions: This paper has defined and analyzed the bud-
geted transcript discovery (BTD) problem – i.e., how to ef-
fectively and efficiently identify which genes are differentially

expressed wrt a phenotype. One benefit of the BTD framework
is that it circumvents the ambiguous methodological choices
that are present in traditional microarray studies, such as how
to decide when a gene is differentially expressed. Another
advantage of the BTD problem is that it provides a solution
to the irreproducibility of microarray studies due to statistical
reasons, as it provides a principled manner to confirm results
with PCR.

We have presented several well-motivated approaches to
solving the BTD problem. If microarrays are affordable relative
to PCRs (in terms of the number of PCR experiments possible
for the cost of an microarray CM ), then we found that our
mLUCB algorithm provides the best solution. However, if the
microarray/PCR cost ratio is high (≥ 400), then our mSPRT
algorithm is able to leverage the additional PCR observations
to be much more precise about the genes it returns, and thus
performs significantly better.
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